National Agricultural Nitrous Oxide Research Program (NANORP) Canberra, 14-15 July 2015

THE UNIVERSITY OF **MELBOURNE**

FACULTY OF VETERINARY & AGRICULTURAL SCIENCES Reducing nitrous oxide (N_2O) emissions from applied nitrogen with nitrification inhibitors: Identification of the key drivers of performance

Helen Suter, Deli Chen*, Shu Kee Lam, Yong Li (*The University of Melbourne*, *project leader)

Charlie Walker, Craig Farlow (*Incitec Pivot Limited*)

Australian Government

Department of Agriculture

- Part 1 : Laboratory Investigation
 - 30 soils to identify key soil property affecting how well nitrification inhibitors work
- Part 2 : Biomass productivity benefits from inhibitors
 - Different N rates applied at 2 sites, dairy (Wye, SA) and HRZ cropping (Cressy, Vic)
- Part 3 : Modelling
 - Development of algorithm to describe nitrification inhibitor impact
 - Incorporation of algorithm into model (WNMM) and validation with field data

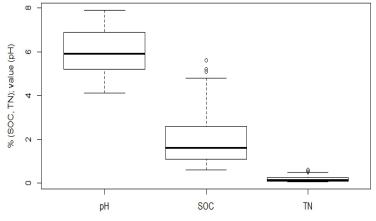


Fig 1. Range of pH, SOC and TN for the 30 soils tested

Part 1: Laboratory Incubations : Nitrification (Part 3: Modelling)

- Nitrification inhibitors reduced average nitrification rates (14 days) by;
 - Average: 39%, Max:100%
- Effectiveness and soil properties:
 - No soil parameter had a major impact
 - But increasing soil organic C
 reduced inhibitor effectiveness
 (R² < 0.29)
- Effectiveness and land use:
 - sugarcane>cropping=
 vegetables>dairy

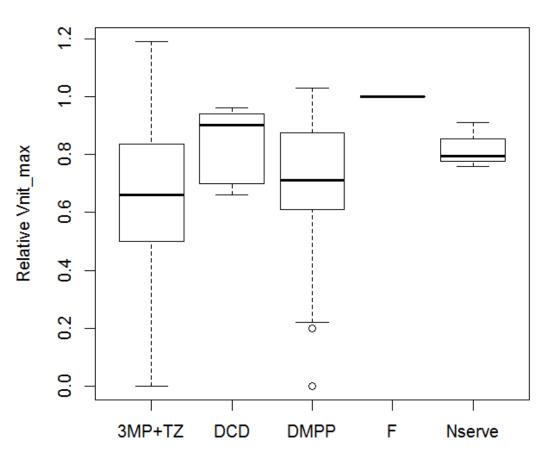


Fig 2. Relative Vnit_max : Maximum nitrification relative to control (fertiliser)

Part 1: Laboratory Incubations : N₂O emissions (Part 3: Modelling)

- Nitrification inhibitors reduced cumulative N₂O emissions (28 days) by;
 - Average: 60%, Max:100%
- Effectiveness and soil properties:
 - No soil parameter had a major impact
 - But decreasing soil pH reduced inhibitor effectiveness
 (R² < 0.25)
- Effectiveness and land use:
 - vegetables>cropping
 - >sugarcane>dairy

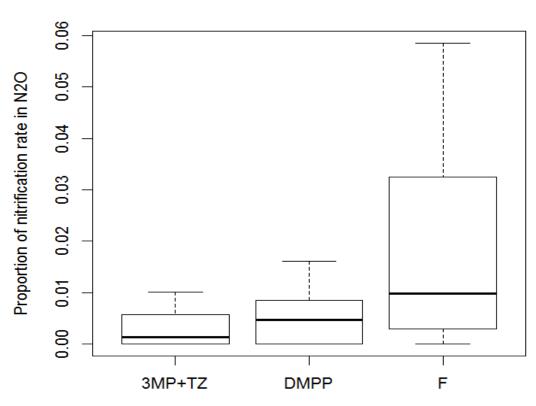


Fig 3. Proportion of nitrification rate in N_2O for inhibitors (3MPTZ and DMPP) and control (fertiliser, F)

- The nitrification inhibitor DMPP, urease inhibitor NBPT, and polymer coated urea (PCU) reduced net-N₂O emissions and emission factors (EF). The impact on emissions intensity (EI) was variable
- Reducing N inputs reduced emissions intensity

Table1 . Biomass, N₂O, Reduction with inhibitor, EF and EI at the Wye site (average of 4 replicates ± standard error)

Treatment	Cumulative biomass⁺ (t ha⁻¹)	Cumulative N ₂ O (g N ha ⁻¹)	Reduction (net) compared to U50 (%)	Emission factor (EF) (%)	Emission intensity (EI)**
С	2.0 ^a	353 ^a			0.18
U50*	4.5 ^{bc}	647 ^c		0.12	0.14
U84*	5.2 ^c	854 ^d		0.12	0.16
EU50 (DMPP)	4.2 ^{bc}	510 ^b	47 ^a	0.06	0.12
GU50 (NBPT)	4.3 ^{bc}	579 ^{bc}	23 ^a	0.09	0.13
PCU50	3.3 ^{ab}	469 ^{ab}	61 ^a	0.05	0.14

*Application rate; $50 = 250 \text{ kg N} \text{ ha}^{-1}$, $84 = 420 \text{ kg N} \text{ ha}^{-1}$. +Cumulative biomass from 6 cuts (May to February) ** Emission intensity = kg N₂O-N/t biomass

Means sharing the same superscript in the column are not significantly different from each other (P<0.05).

• Increasing N inputs increased biomass but decreased NUE

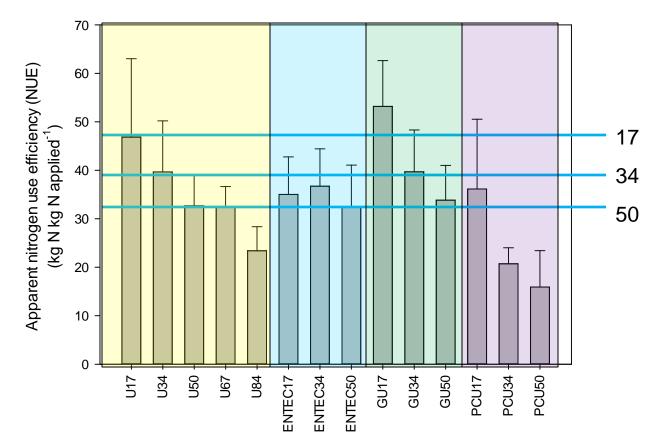
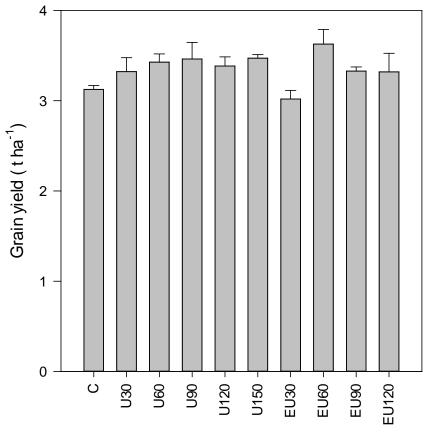



Fig 4. Apparent Nitrogen Use Efficiency (NUE) for Control (C), Urea (U), Urea + DMPP (EU), Urea plus NBPT (GU), polymer coated urea (PCU) at 17, 34, 50, 67 and 84 kg N ha⁻¹ at the Wye site

- Limited N response, limited nitrification inhibitor impact
- The nitrification inhibitor increased yield for 60 kg N ha⁻¹ application rate

15N Recovery (%) plant 30-36 soil 27-42 Most 0-10 & EU30

Fig 5. Grain yield for Control (C), Urea (U) and Urea + DMPP (EU) at 30, 60, 90, 120 and 150 kg N ha⁻¹ at the Cressy site

- The nitrification inhibitor DMPP reduced net-N₂O emissions, the emission factor and emissions intensity relative urea (U)
- Reducing N inputs reduced emissions intensity

Table 2 . Yield, N ₂ O, Reduction with inhibitor, EF and EI at the Cressy site (average of 4 replicates \pm standard e	error)
---	--------

Treatment	Grain yield (t ha ⁻¹)	Cumulative N ₂ O (g N ha ⁻¹)	Reduction (net) (%) compared to U60 (%)	Emission factor (EF) (%)	Emission intensity (EI)*
С	3.1 ^a	215 ^a			0.07
U60	3.4 ^a	391°		0.29	0.12
U120	3.4 ^a	514 ^d		0.25	0.15
EU60 (DMPP)	3.6 ^a	299 ^b	23	0.14	0.08

* Emission intensity = $g N_2O$ -N/t biomass, based on net-N₂O and net biomass production Means sharing the same superscript in the column are not significantly different from each other (P<0.05).

Part 3: Modelling – incorporation of algorithm into WNMM (Cressy field and laboratory data)

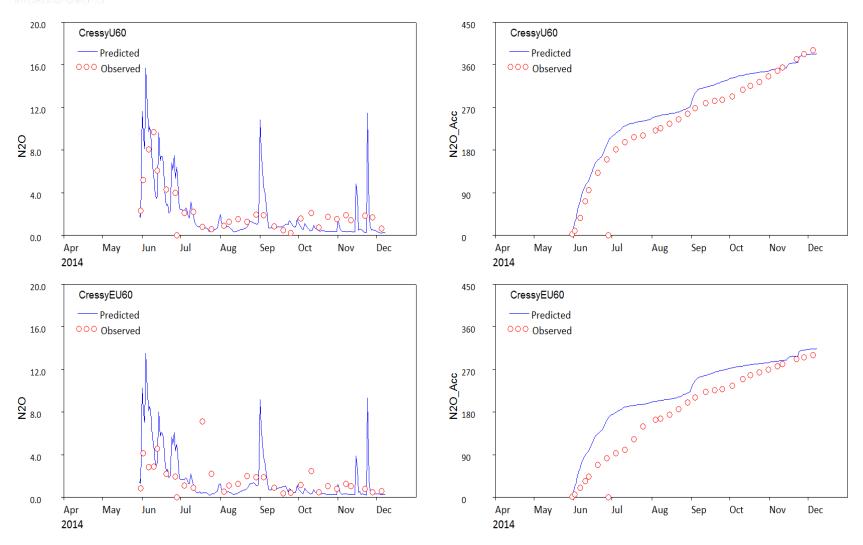
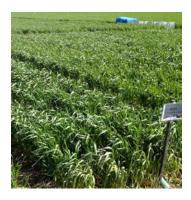


Fig 6. Modelled daily and cumulative N₂O emissions from the Cressy site for urea (U) and urea plus DMPP (EU) at 60 kg N ha⁻¹, using WNMM and the algorithms developed from the laboratory results

Three possible mitigation strategies for N_2O emission reduction


- Nitrification inhibitors Majority of times beneficial Particularly systems like vegetables Potentially greater benefits on higher pH soils Incentives required
- 2) <u>Reducing N inputs</u>

In situations where there is adequate soil N supply

3) Choice of product

Balance N₂O reduction, biomass, NUE and cost-benefit Consider non-target loss pathways

Acknowledgements: Narges Milani, Sima Mazaherinia, Eric Ireland, Rick Jordan, Kate Holberton, Kendra Bignell, Phil Vine, David Hopkins, NANORP Researchers, Landholders

Australian Government

Department of Agriculture

